Protonation, tautomerization, and rotameric structure of histidine: a comprehensive study by magic-angle-spinning solid-state NMR.

نویسندگان

  • Shenhui Li
  • Mei Hong
چکیده

Histidine structure and chemistry lie at the heart of many enzyme active sites, ion channels, and metalloproteins. While solid-state NMR spectroscopy has been used to study histidine chemical shifts, the full pH dependence of the complete panel of (15)N, (13)C, and (1)H chemical shifts and the sensitivity of these chemical shifts to tautomeric structure have not been reported. Here we use magic-angle-spinning solid-state NMR spectroscopy to determine the (15)N, (13)C, and (1)H chemical shifts of histidine from pH 4.5 to 11. Two-dimensional homonuclear and heteronuclear correlation spectra indicate that these chemical shifts depend sensitively on the protonation state and tautomeric structure. The chemical shifts of the rare π tautomer were observed for the first time, at the most basic pH used. Intra- and intermolecular hydrogen bonding between the imidazole nitrogens and the histidine backbone or water was detected, and N-H bond length measurements indicated the strength of the hydrogen bond. We also demonstrate the accurate measurement of the histidine side-chain torsion angles χ(1) and χ(2) through backbone-side chain (13)C-(15)N distances; the resulting torsion angles were within 4° of the crystal structure values. These results provide a comprehensive set of benchmark values for NMR parameters of histidine over a wide pH range and should facilitate the study of functionally important histidines in proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins.

The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, have strongly overlapping (13)C chemical shift ranges between 100 and 160ppm, and have so far been largely neglected in solid-state NMR determination of protein structures. Yet aromatic residues play important roles in biology through π-π and cation-π interactions. To better resolve and assign ...

متن کامل

Selective 1H-1H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR.

Very fast magic-angle spinning (MAS > 80 kHz) NMR combined with high-field magnets has enabled the acquisition of proton-detected spectra in fully protonated solid samples with sufficient resolution and sensitivity. One of the primary challenges in structure determination of protein is observing long-range 1H-1H contacts. Here we use band-selective spin-lock pulses to obtain selective 1H-1H con...

متن کامل

High-Resolution NMR of Anisotropic Samples With Spinning Away from the Magic Angle

High-resolution NMR of samples in the solid state is typically performed under mechanical sample spinning around an axis that makes an angle, called the magic angle, of 54.7 degrees with the static magnetic field. There are many cases in which geometrical and engineering constraints prevent spinning at this specific angle. Implementations of in-situ and ex-situ magic angle field spinning might ...

متن کامل

Progress in correlation spectroscopy at ultra-fast magic-angle spinning: basic building blocks and complex experiments for the study of protein structure and dynamics.

Recent progress in multi-dimensional solid-state NMR correlation spectroscopy at high static magnetic fields and ultra-fast magic-angle spinning is discussed. A focus of the review is on applications to protein resonance assignment and structure determination as well as on the characterization of protein dynamics in the solid state. First, the consequences of ultra-fast spinning on sensitivity ...

متن کامل

Elemental quantitation of natural organic matter by CPMAS 13C NMR spectroscopy.

Cross-polarized magic-angle-spinning NMR (CPMAS-NMR) techniques are assumed to be only semi-quantitative in the assessment of carbon distribution in humic substances or natural organic matter, due to a number of interferences such as spinning side bands (SSB) in spectra, paramagnetic species in samples, and low or remote protonation of aromatic carbons. Fast rotor spin rates or direct polarizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 133 5  شماره 

صفحات  -

تاریخ انتشار 2011